Instance Based Sparse Classifier Fusion for Speaker Verification

نویسندگان

  • Mohammad Hasheminejad
  • Hassan Farsi
چکیده

This paper focuses on the problem of ensemble classification for text-independent speaker verification. Ensemble classification is an efficient method to improve the performance of the classification system. This method gains the advantage of a set of expert classifiers. A speaker verification system gets an input utterance and an identity claim, then verifies the claim in terms of a matching score. This score determines the resemblance of the input utterance and preenrolled target speakers. Since there is a variety of information in a speech signal, state-of-the-art speaker verification systems use a set of complementary classifiers to provide a reliable decision about the verification. Such a system receives some scores as input and takes a binary decision: accept or reject the claimed identity. Most of the recent studies on the classifier fusion for speaker verification used a weighted linear combination of the base classifiers. The corresponding weights are estimated using logistic regression. Additional researches have been performed on ensemble classification by adding different regularization terms to the logistic regression formulae. However, there are missing points in this type of ensemble classification, which are the correlation of the base classifiers and the superiority of some base classifiers for each test instance. We address both problems, by an instance based classifier ensemble selection and weight determination method. Our extensive studies on NIST 2004 speaker recognition evaluation (SRE) corpus in terms of EER, minDCF and minCLLR show the effectiveness of the proposed method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Speaker verification with multiple classifier fusion using Bayes based confidence measure

A novel framework based on Bayes-based confidence measure (BBCM) for Multiple Classifier System (MCS) fusion is proposed. As shown here, BBCM based MCS combination scheme corresponds to the ordinary Bayes fusion weighted by the reliability of each individual classifier. BBCM provides a formal model for heuristic weighting functions employed elsewhere. When compared with the ordinary Bayesian fu...

متن کامل

Confidence based multiple classifier fusion in speaker verification

A novel framework based on Bayes-based confidence measure for Multiple Classifier System fusion is proposed. Compared with ordinary Bayesian fusion, the presented approach leads to reductions of 20% and 25% in EER and ROC curve area, respectively, in speaker verification.

متن کامل

On exploring the similarity and fusion of i-vector and sparse representation based speaker verification systems

The total variability based i-vector has become one of the most dominant approaches for speaker verification. In addition to this, recently the sparse representation (SR) based speaker verification approaches have also been proposed and are found to give comparable performance. In SR based approach, the dictionary used for sparse representation is either exemplar or learned from data using the ...

متن کامل

Variational Bayes logistic regression as regularized fusion for NIST SRE 2010

Fusion of the base classifiers is seen as a way to achieve high performance in state-of-the-art speaker verification systems. Typically, we are looking for base classifiers that would be complementary. We might also be interested in reinforcing good base classifiers by including others that are similar to them. In any case, the final ensemble size is typically small and has to be formed based o...

متن کامل

Speaker Verification Using Adapted User-Dependent Multilevel Fusion

In this paper we study the application of user-dependent score fusion to multilevel speaker recognition. After reviewing related works in multimodal biometric authentication, a new score fusion technique is described. The method is based on a form of Bayesian adaptation to derive the personalized fusion functions from prior user-independent data. Experimental results are reported using the MIT ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016